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Quantitative Analysis of Purposive Systems: Some Spadework
at the Foundations of Scientific Psychology

William T. Powers
Northbrook, Illinois

The revolution in psychology that cybernetics at one time seemed to promise
has been delayed by four blunders: (a) dismissal of control theory as a mere
machine analogy, (b) failure to describe control phenomena from the behaving
system's point of view, (c) applying the general control system model with its
signals and functions improperly identified, and (d) focusing on man-machine
systems in which the "man" part is conventionally described. A general non-
linear quasi-static analysis of relationships between an organism and its environ-
ment shows that the classical stimulus-response, stimulus-organism-response,
or antecedent-consequent analyses of behavioral organization are special cases,
a far more likely case being a control system type of relationship. Even for
intermittent interactions, the control system equations lead to one simple char-
acterization: Control systems control what they sense, opposing disturbances as
they accomplish this end. A series of progressively more complex experimental
demonstrations of principle illustrates both phenomena and methodology in a
control system approach to the quantitative analysis of purposive systems, that
is, systems in which the governing principle is control of input.

This article concerns four old conceptual
errors, two mathematical tools (which in this
context may be new), and a series of six
quantitative experimental demonstrations of
principle that begin with a simple engineer-
ing-psychology experiment and go well be-
yond the boundaries of that subdiscipline. My
intent is to take a few steps toward a quan-
titative science of purposive systems.

Qualitative arguments on the subject of
purpose have abounded. Skinner (1972) has
expressed one extreme view:
Science . . . has simply discovered and used subtle
forces which, acting upon a mechanism, give it the
direction and apparent spontaneity which make it
seem alive, (p. 3)

An extreme opposite view is expressed by
Maslow (1971):

Self-actualizing individuals . . . already suitably
gratified in their basic needs, are now motivated in
other higher ways, to be called "metamotivations."
(p. 299)

Inquiries concerning this article should be sent to
William T. Powers, H38 Whitfield Road, North-
brook, Illinois 60062.

In the middle ground are many others who
have tried to deal with inner purposes, for
example, Kelley (1968), McDougall (1931),
Rosenblueth, Wiener, and Bigelow (1968),
Tolman (1932), and Von Foerster, White,
Peterson, and Russell (1968). I have con-
tributed some arguments as well (Powers,
1973; Powers, Clark, & McFarland, 1960a,
1960b). Obviously, none of these arguments,
which are all qualitative, has succeeded in
settling the issue of inner purposes.

In the 1940s, many of us thought that the
missing quantitative point of view had been
discovered. Cybernetics: Control and Commu-
nication in the Animal and the Machine
(Wiener, 1948) seemed to contain the con-
ceptual tools that might at last explain how
"mental" causes could enter into "physical"
effects. It seemed that a bridge might be built
between inner experiences and outer appear-
ances. A cybernetic revolution in psychology
seemed just about to start. Now, in the late
1970s, it is still just about to start. Some-
thing happened to the original impetus of
cybernetics, as a river entering the desert
splits into a hundred wandering channels and
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sinks into the sand. I have some suggestions
as to what went wrong.

Four Blunders

It is not so much honest labor on my part
that puts my name to this critique as it is a
series of blunders (qualitative mistakes) by
others who could have done long ago what I
am doing now. However unavoidable, these
blunders have been directly responsible for the
failure of cybernetics and related subjects to
provide new directions for psychology.

Machine Analogy Blunder

In 1960, the president of the Society of
Engineering Psychologists wrapped up the
previous decade of cybernetics as follows:

The servo-model, for example, about which there
was so much written only a decade or two ago,
now appears to be headed toward its proper posi-
tion as a greatly oversimplified inadequate descrip-
tion of certain restricted aspects of man's behavior
. . . . Whenever anyone uses the word model, I re-
place it with the word analogy. (Chapanis, 1961,
p. 126)

This view is still held. There are and have
been for some time scientists who think of
control system models of behavioral organiza-
tion as a mere analogy of human behavior to
the behavior of a technological invention.

A little digging underneath the engineering
models suggests that this opinion is mistaken.
Servomechanisms have always been designed
to take over a kind of task that had previously
been done by human beings and higher ani-
mals and by no other kind of natural system,
that of controlling external variables (bring-
ing them to predetermined states and actively
maintaining them in those states against any
normal kind of disturbance; Mayr, 1970). It
was not until the 1930s, however, that there
existed a sufficient variety of sensors or elec-
tronic signal-handling devices to permit simu-
lation of the more abstract kinds of human
control actions, for example, the adjustment
of a meter reading to keep an indicated pH
at a predetermined setting. The control-en-
gineers-to-be of the 1930s necessarily had to
study what a human controller was doing in
order to see just what had to be imitated.

The functions of perception, comparison, and
action had to be isolated and embodied in
an automatic system, a quantitative working
model of human organization of a type that
psychology and biology had never been able
to develop. Thus, the servomechanism has al-
ways been only an imitation of the real thing,
a living organism, and the engineers who in-
vented it first had to be, however unwittingly,
psychologists. The analogy developed from
man to machine—not the other way.

Objectification Blunder

The machine analogy blunder set the scene
for missing the point of control theory, but
the objectification blunder would have been
enough by itself. In cybernetics, it arose quite
naturally out of the fact that artificial con-
trol systems are designed for use by natural
ones, that is, human beings.

The designer and user of an artificial con-
trol system are understandably interested in
the output of the system and effects of that
output on the world experienced by the user.
Control systems, however, control input, not
output. When the input is disturbed, the out-
put varies to oppose incipient changes of the
input and thus cancel most of the effect of
the disturbance. Thus, the only way to make
such systems useful is to be sure that the
input to the system depends strictly on the
environmental effect that the user wants con-
trolled and to protect the input from all
other influences. If that environmental effect
is an immediate consequence of output, the
output will appear to be controlled as far as
the user's purposes are concerned. Indeed,
the controlled consequence of the actual out-
put is likely to be called the output.

Natural systems cannot be organized
around objective effects of their behavior in
an external world; their behavior is not a
show put on for the benefit of an observer or
to fulfill an observer's purposes. A natural
control system can be organized only around
the effects that its actions (or independent
events) have on its inputs (broadly defined),
for its inputs contain all consequences of its
actions that can conceivably matter to the
control system.

This was Skinner's (1938) momentous dis-
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Figure 1. Adaption of Wiener's (1948) control system diagram. (This diagram has misled a gen-
eration of life scientists. The "input" is really the reference signal, which in organisms is generated
internally. Sensory inputs are actually at the input to the "feedback takeoff." Disturbances of the
sensory input are not shown. Adapted with permission from Cybernetics: Control and Communica-
tion in the Animal and the Machine by Norbert Wiener. Copyright 1948 by M.I.T. Press.)

covery. He concluded that behavior is con-
trolled by its consequences, unfortunately ex-
pressing the discovery from the observer's or
user's point of view. From the behaving sys-
tem's point of view, however, Skinner's dis-
covery is better stated in the following way:
Behavior exists only to control consequences
that affect the organism. From the viewpoint
of the behaving system, behavior itself, as
output, is of no importance. To deal with be-
havior under any model strictly in terms of
its objective appearance, therefore, is to miss
the reason for its existence. Cybernetics and
especially engineering psychology simply took
over this erroneous point of view from be-
haviorism. This error is closely related to the
next one.

Input Blunder

Wiener himself was accidentally a prin-
cipal contributor to the input blunder. A
diagram from Wiener's (1948) book on cy-
bernetics (see my Figure 1 for an adaption
of Wiener's diagram) was taken directly from
an engineering and users' viewpoint model.
Examining Figure 1, the reader will see that
there is an "input" coming in from the left,
which joins a feedback arrow at a "subtrac-
tor," or more commonly, a "comparator."
The "error" signal from the comparator ac-
tuates the rest of the system to produce an
"output," from which the "feedback" path
branches. This basic form has been repeated
without change in the literature of psychol-
ogy, neurology, biology, cybernetics, systems
engineering, and engineering psychology from
1948 to the present. It is nearly always in-
terpreted incorrectly.

When a person concerned with sensory pro-
cesses sees the word input, it is natural to
translate the term to mean sensory input or
stimulus. But the arrow entering the subtrac-
ter is not a sensory input. It is a reference
input, and the information reaching the sub-
tractor or comparator by that path is by
definition and function the reference signal.
Engineers show reference signals as inputs be-
cause artificial control systems are meant for
use by human beings, who will operate the
system by setting its reference input to in-
dicate the desired value of the controlled
variable. In natural control systems, there are
no externally manipulable reference inputs.
There are only sensory inputs. Reference sig-
nals for natural control systems are set by
processes inside the organism and are not ac-
cessible from the outside. Another name for
a natural reference signal is purpose. We ob-
serve such natural reference signals only in-
directly as preferred states of the inputs to
the system. Control systems are organized to
keep their inputs (represented by the feed-
back signal) matching the reference signal.

Where, then, are the sensory inputs in
Wiener's diagram? They are in the "feedback
takeoff" position, or more precisely, they are
in the junction where the feedback path leaves
the output path. In that same junction are
contained all the physical phenomena that
lie between motor output and sensory input,
which in some cases can include a lot of ter-
ritory. The arrow labeled "output" and ex-
iting toward the right should really be labeled
"irrelevant side effects" because effects of out-
put that do not enter into the operation of
this system are of importance only to some
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Figure 2. Compensatory tracking. (The "man" is a stimulus-response device embedded in an arti-
ficial control system. The influence of Wiener's [1948] diagram is apparent [see the present Figure
1], Adapted with permission from Tracking Skill and Manual Control by E. Poulton. Copyright
1974 by Academic Press.)
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external observer or user. Those side effects
tell us nothing about the principles of control.

Man-Machine Blunder

If one's primary purpose is to keep pilots
from flying airplanes into the ground or to
make sure that a gunner hits a target with
the shell, that is, if one's purposes concern
objectivized side effects of control behavior,
the man-machine blunder amounts to nothing
worse than a few mislabelings having no prac-
tical consequences. If one's interest is in the
properties of persons, however, the man-ma-
chine blunder pulls a red herring across the
path of progress.

Consider Figure 2, adapted from Poulton
(1974). The "man" in this experiment is sup-
posed to hold a cursor on the display next to
a fiduciary mark; this task is like keeping a
ship on a compass course or flying an airplane
level by keeping an artificial horizon centered.
The immediate task is to maintain a given
appearance of the display; a side effect of
doing so is to stabilize some objective situa-
tion of which the display is a partial repre-
sentation. The objective situation, of course,
is the whole point of the experiment from the
experimenter's point of view.

From the subject's point of view, however,
the display simply shows a variable picture
that the subject can maintain in any stable
condition desired. The subject could keep the
cursor a fixed distance off the fiduciary mark,
as a pilot could keep the artificial horizon
above the center mark while deliberately los-
ing altitude, or as a navigator-helmsman could
keep the compass reading several degrees east
of the intended course in order to compensate
for a remembered westward deviation of mag-
netic north from true north.

The so-called "error" in Figure 2 is not an

error at all; the error corresponds to a sen-
sory input, both for the subject and for the
experimenter. The crossed circle is not a com-
parator, but only a place where external dis-
turbances join feedback effects in determin-
ing the state of the display. Wiener's diagrams
did not show disturbances.

Only the subject has a means of directly
affecting the state of the display; hence, the
display will be made to match the subject's
inner reference. If doing this causes the ex-
perimenter to see an error (Figure 2 shows
the experimenter's point o'f view), the only
corrective action the experimenter can take
is to halt the experiment and persuade the
subject to reset his inner reference signal to
produce a result the experimenter experiences
as zero error.

That, of course, is what is done. By dem-
onstration and instruction, the subject is
shown where to set his internal reference; if
the subject complies, the experiment proceeds.
The analysis of the data can then be done
under the assumption that there is no offset
in the "man" -box. Thus objectifying the error
assures that the experiment will not reveal
one of the most important properties of the
subject: the ability to manipulate an inner
reference signal. As this situation is usually
analyzed, the man's purposive properties drop
from view, and those of the experimenter are
quietly incorporated into the so-called "ob-
jective" analysis.

From the General to the Specific

The preceding discussion suggests that the
failure of control theory to create a cybernetic
revolution in psychology may not have been
the fault of control theory. I hope my implied
criticisms have stayed on target because there
is no reason to belittle what cyberneticists
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have done or what engineering psychologists
have discovered. The blunders I have de-
scribed are principally blunders of omission
and misinterpretation that have unnecessarily
but unavoidably limited the scope of these
endeavors. I shall commit blunders of my own
just like these, as will we all. That is the
penalty for trying something new.

In trying to develop control theory as a
tool for experimental psychology, I think it is
important to avoid assuming that any example
of behavior involves a control organization. I
have been critical of some psychologists for
adopting a language that periodically asserts
a model by calling every action a "response,"
but I succumb to the same kind of temptation
myself when trying to convey my own point
of view. A basic analysis cannot be very con-
vincing if its conclusions are plugged in where
the premises are supposed to go, so in the
following section, the treatment will begin in
as general a form as possible.

Let us assume little more than the early
behaviorists did, and in some respects, let us
assume a great deal less. The organism will
be treated as nothing more than a connection
between one set of physical quantities in the
environment (input quantities) and another
set of physical quantities in the environment
(output quantities). By leaving the form of
the organism function general, however, we
will allow for possibilities that were tacitly
ruled out at the turn of the century, the most
important one being the possibility of a secu-
larly adjustable constant term in the system
function. That term will ultimately turn into
the observable evidence of an inner purpose,
although I will not pursue that point vigor-
ously here.

This approach will explicitly recognize the
fact that the inputs to an organism are af-
fected not only by extraneous events but pos-
sibly by the organism's own actions. By leav-
ing the development general, we will be able
to deal deductively with feedback effects, not
asserting them but simply stating the observa-
ble conditions under which they necessarily
appear and those under which they can be ig-
nored. Thus, the classical mechanistic cause-
effect model will become a subset of the pres-
ent analysis.

Let us now turn to mathematical tools,
beginning with an approach that is neither as
detailed as possible nor as general as possible
but that is, to my taste, just right (naturally).

The Quasi-static Approach

A quasi-static approach is one in which
physical variables, although known to be sub-
ject to dynamic constraints, are treated as
algebraic variables. In the physical sciences,
this is a commonplace procedure. For example,
the motions of the free ends of a lever are
treated as if the motions of one end were liter-
ally simultaneous with the motions of the
other end; inertia and transverse waves propa-
gating along the lever are ignored. If a real
lever is moved too rapidly, it will bounce off
its fulcrum; one does not expect a quasi-static
analysis to hold for such extreme cases.

The validity of the quasi-static approach
as well as its usefulness depend on the fre-
quency domain of interest. The designer of a
man-machine system focuses on the high-fre-
quency limits of performance because his task
is not to understand the man but to get the
most out of the machine for some extraneous
purpose. This is the origin of the transfer
function approach, and the reason why the
engineering models can get away with treat-
ing the man in the system as an input-output
box.

I am interested in the frequency domain
that lies between a pure steady state and the
"corner frequency," where the quasi-static
analysis begins to break down. Thus, the anal-
ysis here does not encroach on the territory
of engineering psychology. In the present anal-
ysis, there would be no point in carrying the
transient terms of interest in engineering psy-
chology because they go to zero before they
become important. There would be a positive
disadvantage in using mathematical forms
that map the space being investigated into an
intuitively unrecognizable space with non-
physical variables in it ("cisoidal oscillations"
or imaginary quantities found in Laplace
transform theory and commonly applied to
control systems; see Starkey, 1955, p. 31).
The following analysis, while of little use for
measuring transfer functions in the normal
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way, is suited to the elucidation of the struc-
ture of behavioral organization.

A Quasi-static Analysis

Consider a behaving system ("system" for
short) in relationship to an environment. The
system is the simplest possible: It has one
sensory input affected by an input quantity,
q\, and one output that affects an output
quantity, q0. Both (ft and q0 are ordinary
physical quantities in the environment or else
are regular functions of measurable physical
quantities.

In general, a change at the input to the
system will result in a change at the output
because of intervening system characteristics.
The output quantity will be related to many
other external quantities, but the only one of
interest here is qi, the input quantity. The
input quantity will also be subject to dis-
turbances from variables that change or re-
main constant independently of the output of
the system.

The assumption of dynamic stability is
made: After any transient disturbance, the
system-environment relationship will come to
a steady-state equilibrium quickly enough to
permit ignoring transient terms in the differ-
ential equations that actually describe the re-
lationship. This assumption implies the use
of an averaging time or a minimum time reso-
lution appropriate to each individual system.

It should not be thought that this assump-
tion limits us to a static case. In the equation
F = MA, or force equals mass times accelera-
tion, the algebraic variable A is really the
second derivative of position with respect to
time. Nevertheless, there are many useful and
accurate applications of this algebraic formula
in dynamic situations. In a great variety of
situations, time-dependent variables can be
dealt with quasi-statistically simply by a
proper definition of the variables. All that is
lost is the ability to predict behavior near the
dynamic limits of performance in terms of
the chosen variables. The system equation is

9o = j(q\), f being a general
algebraic function. (1)

(Small letters will be used for functions and

capital letters for multipliers of parenthesized
expressions when ambiguity is possible.)

The environment equation contains two
terms representing linearly superposed contri-
butions from two sources, which together de-
termine completely the state of the input
quantity. One contribution comes from the
output of the system via qa. The magnitude
of qa contributes an amount £(#0), where g
is a general algebraic function describing the
physical connection from q0 to q\: This is the
feedback path, which is missing when #(90)
is identically zero.

All other possible influences on the input
quantity that are independent of qa are
summed up as an equivalent disturbing quan-
tity, q&, contributing to the state of qt through
an appropriately defined physical link sym-
bolized as the function h; the magnitude of
the contribution from disturbing quantities is
thus h(q&). This provides the following en-
vironment equation (see Figure 3):

?i = g(<Io) + h(q&)- (2)

The assumption of dynamic stability per-
mits treating the system and environment
equations as a simultaneous pair. To find a
general simultaneous solution valid for all
quasi-static cases in which physical continuity
exists, we shall rearrange Equations 1 and 2
into equally general forms that are more ma-
nipulable. First, a Taylor series expansion of
/(<?i) is performed around a special (and as
yet undefined) value, q^*, and an expansion
of £(#0) is done about the corresponding spe-
cial value £0*. For /((ft), the factor (<?i — <7i*)
is factored out of the variable terms, leaving
the following quotient polynomial:

A, B,C, and so on are the Taylor coefficients.
The quotient polynomial is symbolized as U
to yield the following working system equa-
tion:

+U(ql-ql*). (3)

In a parallel manner, with the quotient
polynomial symbolized as V, g ( q 0 ) is repre-
sented as g(q0*) + V(q0 - q0*) to yield the
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Figure 3. Relationships among variables and functions in the quasi-static analysis. (The topo-
logical similarity of Wiener's [1948] diagram, adapted in the present Figure 1, is of no significance
because these variables and functions all pertain to observables outside the organism. This is not
a model of the organism; it is a model of the organism's relationships to the external world.)

working environment equation of

Let the special value of qit or qi*, be de-
fined as the value of q^ when there is no net
disturbance: h(q&) = 0. Then q\* = g(q0*)
and g0* =/(<?!*). Substitutions into Equa-
tions 3 and 4 then yield

(5)- q f )

and

qi-qi*=V(qa-q0*)+k(qi). (6)

Substitution of Equation 6 into Equation 5
produces, after some manipulations twice in-
volving the equivalence V(q0 — q0*) = g(q0)
— g(qa*), Equation 7:

- UV,

where UV ̂  1. (7)

Substituting from Equation 5 into Equation
6 directly yields Equation 8:

where UV ̂  1. (8)

The dimensions of U are change of output
per unit change of input, and the dimensions
of V are change of input per unit change o'f
output. Thus, the product UV is a dimension-
less (and variable) number. It is customarily
called the loop gain in morphologically simi-
lar equations of control theory.

So far these equations remain completely
general, applying to any system-environment
relationship of the basic form assumed, when

the assumption of dynamic stability is ob-
served to hold true. No model of the internal
organization of the behaving system has been
assumed, nor has it been assumed that we are
dealing with a control system or even a feed-
back system. The only limits set on non-
linearity of the functions are practical ones:
Systems that are radically nonlinear are not
likely to meet the assumption of dynamic sta-
bility. These prove to be quite permissive
limits.

Classifying System-Environment
Relationships

The behavior of a system as denned here
can be classified according to the observed
magnitude and sign of the loop gain, UV. A
severely nonlinear system can conceivably
pass from one class to another during behavior.

Type Z: Zero Loop Gain

If the product UV is zero because the func-
tion / is zero, there is no behaving system.
If it is zero because the function g is zero,
there is no feedback and the simultaneous
solution of the equations becomes (from
Equations 1 and 2)

?o = /(?!)= /[*(?<)].

This is the open-loop case and corresponds
to the classical cause-effect model of behavior.
If (ft is considered a proximal stimulus (lo-
cated at the sensory interface or even at some
stage of perceptual processing inside the sys-
tem) and 9a a distal stimulus, then the output
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or behavior is mediated by the organism ac-
cording to the form of the function /, and
the proximal stimulus is the immediate cause
of behavior. A stimulus object or event op-
erates from its distal position as qA, affecting
the proximal stimulus (ft through intervening
physical laws described by the function h.
Thus, a simple lineal causal chain links the
distal stimulus to the behavior.1

I shall say Z system to mean a behaving
system in this Type Z relationship to its en-
vironment. In order to show that a given
organism should be modeled as a Z system, it
is necessary to establish that the organism's
own behavior has no effect on the proximal
stimuli in the supposed causal chain. I be-
lieve that this condition is, in any normal
circumstance, impossible to meet. I will show
later that even separating stimulus and re-
sponse in time will not make the Z-system
model acceptable.

Type P: Positive Loop Gain

If UV is positive and not zero, there is a
Type P, or positive feedback, relationship be-
tween system and environment. The behaving
system is then acting as a P system. This
type of relationship is dynamically stable only
for UV < 1. A dynamic analysis is needed to
show what happens for UV ;> 1; the algebraic
equations give spurious answers. The P sys-
tem goes unconditionally into self-sustained
oscillations that either continue at a constant
amplitude or increase exponentially or simply
head for positive or negative infinite values
of its variables. Whichever 'happens, the quasi-
static analysis breaks down, as does the be-
havior of the system, since this is not gen-
erally considered normal behavior. A Type P
relationship is dynamically stable only for
0<UV<1.

There have been qualitative assertions in
the literature that positive feedback may be
beneficial because it "enhances" or "amplifies"
responses. Such assertions are uninformed.
Positive feedback does amplify the response
to a disturbance because in a Type P rela-
tionship, behavior aids the effects of the dis-
turbance on the input quantity. Equation 7
can be used to calculate the amplifying effects
of various amounts of positive feedback, with

the amplification factor being UV/(l — UV).
The following list is an example of these cal-
culations:

UV

.5

.6

.7

.8

.9

.99

Amplification
factor

1.0
1.5
2.3
4.0
9.0

99.0
unstable

In a nonlinear system, UV varies with the
magnitude of disturbance; furthermore, natu-
ral systems have muscles that fatigue and
interact with environments having variable
properties. These facts are incompatible with
the narrow range of values df UV (shown
above), in which any useful amount of am-
plification is obtained from positive feedback.
The relationship would always be on the
brink of instability under the best of circum-
stances. We may expect natural P systems to
be rare.

Type N: Negative Loop Gain

If UV is negative and not zero there is a
Type N, or negative feedback, relationship
between system and environment. The sys-
tem is an N system. UV may have any nega-
tive value. In N systems, preservation of dy-
namic stability requires a trade-off between
the magnitude of UV and the speed of re-
sponse of the system. Servo-engineers would
recognize the great advantage we have here
over the person who has to design such a
system: The designer has to tailor the dy-
namic characteristics to make the system-en-
vironment relationship stable; we only have
to observe that it actually is stable. The equa-
tions we are using would be of no help to a
designer of control systems.

It is difficult to find an example of behav-
ior in which the 'feedback connection g is

1 Lineal means occurring along a line or in simple
sequence, as in lineal feet. Linear means described by
a firstrdegree equation: For example, the equation
y = 3* expresses a linear relationship between x and
y, while y = 3* +!/* expresses a nonlinear relation-
ship.
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missing; feedback is clearly present in most
circumstances. Moreover, it is generally found
that organisms are sensitive to small changes
of stimuli and that feedback effects are pro-
nounced, so the magnitude of UV must be
assumed in general to be large. Since we do
not commonly observe dynamic instability, it
follows that the sign of U must be opposite
to that of V, that is, that the feedback is
negative and the system an N system junder
most circumstances. Detailed investigation of
individual cases, of course, will settle the
question. I hope, however, that it can be seen
that the Type N relationship is an important
one. We shall examine its properties.

Properties of the Type N relationship. On
the right side of Equation 7 is the expression
UV/'(\ — UV), a form familiar in every
mathematical approach to closed-loop anal-
ysis. With UV being dimensionless and nega-
tive for N systems, this expression is a dimen-
sionless negative number between 0 and —1.
Furthermore, the larger the minimum value
of —UV becomes, the more nearly UV/(l —
UV) approaches the limiting value — 1. When
this limiting value is closely approached, we
can call the system an ideal N system.

In the experiments to be described, the typi-
cal minimum value of UV estimated from the
data was —30. Thus, only a 3% error is en-
tailed in saying that subjects behaved as ideal
N systems, in which ( — UV) is extremely
large.

For an ideal N system, Equations 7 and 8
reduce to especially simple forms:

and

(7a)

(8a)

From these equations can be drawn two
basic statements that characterize a wide
variety of N systems but more accurately for
those that approach the ideal N system.
Equation 7a is easier to translate if we re-
member that #!* = g(q0*). The term g(q0)
represents the effect of the output on the in-
put quantity, h(qA) represents the effect of
the disturbance on the input quantity, and
q0* is the value of the output when there is
no disturbance acting. It follows that the

change in the output quantity away from the
no-disturbance case is just what is required
to produce effects on the input quantity that
cancel the effects of the disturbance. Equation
8a expresses the consequence of this cancella-
tion: The input quantity remains at its un-
disturbed value, <?i*. Thus, the actions of an
N system, mediated by the feedback path,
stabilize its input quantity against the effects
that disturbances otherwise would have. An
ideal N system does this perfectly.

It will be seen that the widespread notion
that negative feedback systems control their
outputs is a misconception. In an artificial
control system designed to produce outputs
of interest to a user, the feedback function g
is selected to make sure that gt is precisely
related to some objective consequence of q0,
so that controlling gi will indeed result in con-
trolling the objective consequence of qa] 'how-
ever, such systems are built to protect them-
selves from all disturbances that might affect
<7i directly. The erroneous transfer of an en-
gineering model directly into a behavioral
model was the cause of the misconception.
The engineering model would show a refer-
ence input to the system, the effect of which
would be to adjust the setting of q\* and also
to indirectly affect the objective consequence.
As mentioned, no such input from the out-
side exists in natural N systems (in none of
those, at any rate, that I have investigated).

A behavioral illusion. Solving Equation 7a
for qa produces

Compare this form with the equation for a
Z system:

The difference in sign is a matter of choice
of coordinates, and the constant gi* can be
used as the zero of the measurement scale, so
the forms are essentially the same. The pri-
mary difference is that the organism function
/ in the Z-system equation is replaced by the
inverse of the feedback function g-1 in the
N-system equation.

This comparison reveals a behavioral il-
lusion of such significance that one hesitates
to believe it could exist. If one varies a distal



426 WILLIAM T. POWERS

stimulus <7d and observes that a measure of
behavior q0 shows a strong regular dependence
on <7d, there is certainly a temptation to as-
sume that the form of the dependence reveals
something about the organism. Yet, the com-
parison we have just seen indicates that the
form of the dependence may reflect only prop-
erties of the local environment. The night-
mare of any experimenter is to realize too
late that his results were forced by his ex-
perimental design and do not actually per-
tain to behavior. This nightmare has a good
chance of becoming a reality for a number
of behavioral scientists. An example may be
in order.

Consider a bird with eyes that are fixed in
its head. If some interesting object, say, a
bug, is moved across the line o'f sight, the
bird's head will most likely turn to follow it.
The Z-system or open-loop explanation would
run about like this: The bug's position, the
distal stimulus, is translated by optical ef-
fects into a proximal stimulus on the retina,
exciting sensory nerves and causing the ner-
vous system to operate the muscles that turn
the head. This causal chain is so precisely
calibrated and its form so linear that the
movement of the head exactly compensates
for the movement of the bug. The image thus
stays centered on the retina.

There is a reason why this kind of explana-
tion skips so rapidly across the proximal
stimulus. If the head tracks the bug perfectly,
the image of the bug will remain stationary
on the retina, as indeed it very nearly does.
But if the image remains stationary or wan-
ders unsystematically about one point, the
causal chain cannot be followed through. The
open-loop explanation contradicts itself.

If the angle o'f the head is q0 and the visual
angle of the bug is qA, q<> has precisely as
much effect as q& has on qi} the position of
the retinal image. By choosing units properly,
therefore, we can say that both g and h are
unity multipliers of opposite sign. The two
functions reflect the laws of geometric optics
and, hence, are exquisitely precise and linear.

Equation 7a predicts that for an ideal N
system, the output will vary as the inverse
g function of the effect of the disturbance.
Thus, the relationship between q& and qa will

be as precise and linear as the laws of geo-
metric optics. The organism function /, on the
other hand, may be both nonlinear and vari-
able over time. As long as the polynomial U
remains large enough, the apparent behavioral
law will be unaffected.

Thus, in the relationship between bug move-
ment and head turning, we are not seeing the
function / that describes the bird; instead,
we anp seeing the function g that describes the
physics of the feedback effects. This property
of N systems is well known to control engi-
neers and to those who work with analog com-
puters. It is time behavioral scientists became
aware of it, whatever the consequences.

Operant Conditioning

The quasi-static analysis works quite well
in at least one kind of operant-conditioning
experiment: the fixed-ratio experiment, in
which an animal provides 'food for itself on a
schedule that delivers one pellet of food for
each n presses of a lever.

The function g becomes just l/n, and there
is no disturbance [h(qA) = 0].a The environ-
ment equation reduces to

qi = q«/n. (9)
The average rate of reinforcement is treated
as being the input quantity. The equations
for an ideal control system predict that
qi = gi*, which is to say that the organism
will keep the average rate of reinforcement
at a level qi* that is determined by a property
of the organism. The average rate of bar press-
ing, using Equation 7a, will be qtt = nq{*.

From Equation 7a, we can predict what will
happen if the schedule is changed from »i
to «2. The corresponding rates of bar pressing,
qol and go2, will be related by

q0i/Qo2 = «i/»2. (10)
The more presses are required to deliver one
pellet, the more rapidly, in direct proportion,
will the animal work the lever. This is a well-
known empirical observation, found while
"shaping" behavior to very high response rates.

A disturbance could be introduced by add-
ing food pellets to the dish where pellets are

2 Excessive efforts, on extreme schedules, would in-
troduce a disturbance.
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delivered by the lever pressing at a rate q&
(the function h is then 1). The environment
equation would then be

<7i = Qo/n + <7a- (11)

From the solution for an ideal N system, we
find

?o = »(tfi* — ?d)- (12)

If (ft* is the observed rate of reinforcement
in the absence of the disturbance, the rate of
lever pressing in the presence of arbitrarily
added food can be predicted. The average
pressing rate will drop as the rate of adding
food rises. When food is added arbitrarily at
a rate just equal to qf, lever pressing will just
cease. This prediction is in accord with scien-
tific observation (Teitelbaum, 1966) and with
the qualitative empirical generalization that
noncontingent reinforcement redu'ces behavior.8

It is evident that in order to predict quan-
titatively the results of this kind of operant-
conditioning experiment, all one needs to as-
sume about the organism is that it is an
ideal N system. The value of gt* can be found
with one observation, and a whole family of
relationships can be predicted thereafter.
Conversely, the information obtained about
the organism in such an experiment is only
that it does act as an ideal N system con-
trolling the rate of reinforcement. This anal-
ysis, while not dealing with learning, shows
that changes of behavior do not necessarily
imply any change of behavioral organization.

Let us now turn to a second quantitative
method, which will be discussed more briefly
but needs to be discussed because it deals
with time delays, which the quasi-static ap-
proach cannot handle.

A Time-State Analysis with
Dynamic Constraints

One persistent and incorrect approach to
feedback phenomena is to treat an organism
as a Z system, with any feedback effects being
treated as if they occurred separately, after
one response and before the next, thus ap-
parently permitting the system itself to be
dealt with in open-loop fashion. Qualitatively,
this seems to work; but, as in every open-
loop analysis, the approach fails quantita-
tively. The knowledge-of-results or stimulus-

response-stimulus-response . . . analysis seems
to succeed only because of the limitations of
verbal or qualitative reasoning.

I shall use a linear model here, so I can
focus on the main point without excessive
complication. Let us alternate between the or-
ganism and the environment, first calculating
the magnitude of the output quantity that re-
sults from the current magnitude of input and
then calculating the next value of the input
from the value of the output and the magni-
tude of the (constant ) disturbance. This pro-
cedure leads to two modified equations. The
system equation will be

qi*)t> (13)

(14)

and the environment equation will be

HqA.

The functions /, g, and h have been trans-
lated into linear multipliers F, G, and H; and
a time index, t, has been introduced. The loop
gain is now the product FG, which corre-
sponds to UV previously.

To skip a useless analysis, I will report that
this set of equations converges to a steady
state with FG in the range between +1 and
— 1 but not at or outside those limits. With
the loop gain FG limited to FG > -1, the
behaving system certainly cannot act like an
ideal N system. The permissible amount of
feedback is so small that there would be
little behavioral effect from having any at all
(except possible proneness to instability).

The difficulty here is that a sequential-state
analysis of this kind introduces time without
taking into account phenomena that depend
on time. In the design of logic circuits, this
can perhaps be done successfully, although a
tight design has to recognize the fact that
so-called "binary variables" in a logic network
are really continuous physical quantities that,
like any quantities in the macroscopic world,
take time to change from one state to another.
Ones and zeros exist only in abstract machines.

Without getting into a full dynamic anal-
ysis, we can introduce a dynamic constraint
on this system by allowing the output to

8 This is an excellent experimental method for mea-
suring QI* in a natural situation.
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change only a fraction of the way from its
current value of q0(t) toward the next com-
puted value of F(qi — q f ) (t) during the time
between one value of t and the next. Letting
K, a number between 0 and 1, be this frac-
tion, let us introduce a modified system equa-
tion with this dynamic constraint:

<7o<*+i) = Qo(t) +
. (15)

Substituting Equation 14 into Equation 15
now yields

FHq& -

KFG- K)

or

qi*). (16)

A steady state for repeated calculations
with Equation 16 will be reached in one jump
if (1 + KFG — K) =0, implying an opti-
mum value for K of

Kopt=l/(l-FG). (17)

Setting g0(*+2) = ?o<o leads to the value
of K at which the system just goes into end-
less oscillation, that is, the critical value or
upper limit of K:

KCIii = 2/(l-FG)=2Kovt. (18)

If Kovt < K < K.<,rit, the successive itera-
tions -of Equation 16 oscillate above and be-
low the steady-state solution, converging more
and more rapidly as K approaches Koft. For
0 < K < Kopt, the successive iterations ap-
proach the same steady state but in an ex-
ponential monotonic way. In any case, the
steady state (ss) is that found by substituting
#opt into Equation 16, with the result

- FG\~G~ ~ ~
For /?G« —1 (an ideal N system), the ex-

pression FG/(1 — FG) can be replaced by
— 1 to yield

Gg0(8B) = ?i* - Hq*. (20)

Comparing this with Equation 7a,

one can see that the linear sequential-state
analysis with a dynamic constraint provides
the same final picture of behavior that the
quasi-static analysis provides. Treating be-
havior as a succession of instantaneous events
propagating around a closed loop will not
yield a correct analysis, no matter how tiny
the steps are made, unless this dynamic con-
straint is properly introduced. With the dy-
namic constraint, the discrete analysis shows
that behavior follows the same laws of nega-
tive feedback whether the feedback effects
are instantaneous or delayed. This considera-
tion has not, to my knowledge, been taken
into account in other discrete analyses of
behavior.

I have found this iterative approach useful
in constructing computer simulations; even
for highly nonlinear systems, it is usually
possible to find a value of K that will stabilize
the model. The behavior is essentially that
of a system with a first-order lag.

Experimental Demonstrations of Principle

Let us now look at six experiments that
bring out fundamental aspects of this ap-
proach. They are not thought experiments,
although I will describe them only in general
terms; they were done with an on-line com-
puter system using real subjects. The aim of
the experiments was not to begin serious ex-
plorations of human nature using these or-
ganizing principles; that task lies in the future
(and I hope I will not be the only one in-
volved in it). The purpose of this effort has
been to select from among dozens of experi-
ments tried over the past 3 years a few that
are easily replicated by many means that
produce reliable results that can be explained
only by the version of control theory used
here and that always give accurate quantita-
tive results, as good as those obtained in the
laboratory demonstrations in introductory
physics courses. Of course, the point of these
experiments will be lost if nobody else tries
them.

There is a way to tell when one has thor-
oughly understood each experiment and has
discarded all inappropriate points of view.
This is to persist until it is seen exactly why
each quantitative result occurs as it does.
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When one realizes that no other outcome is
possible for an ideal N system, one fully un-
derstands the experiment and also how an
ideal N system works. To communicate that
kind of understanding is what I hope for here.

General Experimental Method

A practiced subject sits facing a cathode-ray tube
(CRT) display while holding the handle of a con-
trol stick that is pivoted near the subject's elbow.
The angle of the control stick above the horizontal
is considered the positive direction of behavior, be-
low being the negative, and a digitized version of
that measure in the computer is defined as the output
quantity qa.

On the screen is a short horizontal bar of light
that can move up and down only over a grid of
dots that remains stationary, providing a reference
background. The position of the bar, or cursor, above
or below center is taken as the input quantity, its
measure being the digital number in the computer
corresponding to displayed position qi. This remotely
defined 91 is valid because there are no disturbances
intervening between subject and display that could
alter the perceived figure-ground pattern.

Inside the computer is a random-number routine
that repeats only after 37,000 hours of running time.
Another routine smooths this random number, limit-
ing its band width to about .2 Hz. The resulting
number is the disturbing quantity q&. The subject
has no way to sense the magnitude of qt directly.

The position of the cursor is completely deter-
mined at every instant (that is, 60 times per sec)
by the sum of qa and ?j. When all quantities are
expressed in terms of equivalent units on the screen,
the environment equation corresponding to Equa-
tion 1 is

9i = 9o + gd. (21)

The system equation is just Equation 1: qa= f ( q i ) ,
where / is some general quasi-static algebraic func-
tion. The handle position is thus taken to depend
in some way on the sensed position of the cursor,

A typical run begins with g« forced to zero. Dur-
ing this time, the value of 91 is determined. By defi-
nition, this value is gi*. It is always measured, even
though the instructions may appear to predetermine
it; subjects do not always set qi in the way the ex-
perimenter had in mind. A typical run lasts 60 sec
after the random-number program is allowed to con-
tinue. The random-number generator runs continu-
ously, but for the first part of each experiment,
zero is substituted for the output of the smoothing
routine. So far no two experimental runs have em-
ployed the same pattern of disturbances. If this seems
like excessive zeal to attain randomness, it is done
because a critic once suggested, apparently seriously,
that the sine-wave disturbances I used at first were
being memorized by the subject, even though there
was no way for the subject to detect errors in phase

DOWN

BOUNDARY
TIM£-»

Figure 4. Experiment 1 results drawn from the
cathode-ray tube (CRT) display of data. (The
"cursor" trace represents the up-down position
fluctuations that the subject sees on the CRT screen.
The "disturbance" trace represents the invisible ran-
dom quantity that is added to a representation of
handle position ["handle" trace] to determine the
position of the cursor.)

or amplitude between the subject's actions and the
changes in the disturbance and no way to sense the
disturbance.

Experiment 1: Basic Relationships

The subject is requested to hold the cursor
even with the center row of background dots
(a standard compensatory tracking experi-
ment). The value of #1* is determined as
above, and the run commences. From Equa-
tions 7a and 8a, which presume that the sub-
ject is an ideal N system, it is predicted that
qi = £i* and q0 = qi* — gd. Here, qi* should
be zero and very nearly is.

Figure 4 is a drawing of a typical result
from a plot on the CRT screen. Any practiced
subject will produce this kind of pattern.

The root mean square (RMS) variations
of qi about qf (= 0 here) are about plus or
minus 2% o'f full scale. Thus, q0 is, within the
same tolerance, a mirror image of the dis-
turbance q&.

A minimum value of U can be estimated
from a simulation that best fits the data. For
most practiced subjects, it is at least —30
and may be much larger. The data suggest a
first-order lag system (output proportional to
integral of qi — qi*), but no attempt was
made to determine a valid transfer function.
The assumption of stability is clearly met.
There is little doubt that we are seeing a
nearly ideal N system.

The best way to gain an intuitive under-
standing of Figure 4 is to start with the ob-
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Figure 5. Experiment 3 results drawn from the cathode-ray tube (CRT) display of the data. (The
upper trace shows the behavior of the cursor [<?i] on the CRT screen without [left] and with
[right] the disturbance acting. The lower trace shows the handle position [g0] with no disturbance
acting [left] and the handle position [?«] and disturbance magnitude [?a] when disturbance
begins changing [right]. The output, not the input, directly reflects the disturbance. The duration
of the run was about 1 minute.)

served fact that the input quantity remains
essentially at the value qi*. It follows that
the handle must always be in the position
that balances out the effect of the disturb-
ance. We are not modeling the interior of the
subject, so we need not worry about how this
effect is created. It is a fact to be accepted.
From the fact that the input is stabilized, the
other relationships follow.

Experiment 2: Unspecified qi*

The subject is now asked to hold the cur-
sor in "some other position," as accurately as
possible. With q& — 0, qi* is measured, and
the run commences. The results are the same
as before, with a nonzero value of qi*. This
variation on Experiment 1 shows that the sub-
ject, not the apparatus or die experimenter,
determines a specific quantitative setting of
<?.*.

Experiment 3: Change of Variable

The subject is asked to make the cursor
move in any slow rhythmic pattern, the same
pattern throughout the run. The subject in-

dicates when the pattern on the screen (with
q& — 0) is the one to be maintained. The run
commences. The initial pattern is taken to be
<7i*; there are many means for characterizing
a temporal pattern quasi-statistically, such as
phase, amplitude, or frequency measures (one
or more of which might prove to be controlled
or uncontrolled). I used a much more sub-
jective method, adequate for present purposes
although not for serious work: eyeballing the
data.

A typical result is shown in Figure 5. A
separate plot is given for q\ to avoid con-
fusing the curves. Without any disturbance,
the measure of handle behavior is the same
as the measure of the input quantity. Regu-
larities in the cursor behavior appear to be
just reflections of regularities in the handle
behavior. When the disturbance is applied to
the cursor, however, it is the handle behav-
ior, not the cursor behavior, that begins to
show corresponding large random fluctuations.
This is not at all what the customary cause-
effect model would predict.

Two major points are illustrated here. One
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is that more than one input quantity can be
denned in a given experimental situation. The
other is that the regularities we commonly
term behavior are more likely in a natural en-
vironment to be associated with inputs than
with outputs. Outputs reflect disturbances as
well as the actions required to produce a given
input pattern, and the component of output
reflecting nothing more than disturbances may
be by far the larger component. This fact
may suggest why behavioral science so often
has to rely on statistical methods to deal with
its subject matter.

Experiment 4: The Behavioral Illusion

The conditions of Experiment 1 are now
restored, and the computer is programmed to
insert a nonlinear function between actual
handle position and the effect of the handle
on cursor position. This nonlinear function is
the g function previously denned. Its form
here is

g(x) = Ax + Bx».

The polynomial V is thus A + Bx2. A and B
are chosen so that the minimum value of V,

T H E O R Y

O B S E R V E D RANGE
80% or POINTS)

Figure 6. Experiment 4 results drawn from the cath-
ode-ray tube display of the data, with a mildly non-
linear feedback connection. (Handle position is re-
lated to disturbance magnitude according to the
inverse of the feedback connection. Dots represent
the calculated inverse. Wavy lines show the approxi-
mate range of 300 data points for the practiced
subject. The output quantity is represented by 0o.
The disturbing quantity is represented by ?a.)

. T H E O R Y

N^OBSERVED RANGE

(~ao» OF POINTS)

Figure 7. Experiment 4 results drawn from the cath-
ode-ray tube display of the data, with an extremely
nonlinear feedback connection (two-valued near
center). (Subject's behavior [wavy lines] follows
theoretical inverse, except near the center, where the
region of positive feedback is skipped over. The out-
put quantity is represented by q». The disturbing
quantity is represented by ?a.)

at the center of the screen, is one third of the
maximum value at the boundaries.

If we call <?i* zero, whatever its magnitude,
and refer measures of q{ to that zero point, we
can interpret Equation 7a to predict

Instead of computing the unwieldly inverse,
we can simply plot qa against q&, for it is
predicted that

AqQ + Bq0* = -q&, where ?i* = 0.

A typical result for any practiced subject
is drawn in Figure 6. The RMS error between
qi and eft* remains about 2% of full scale.
Most subjects notice nothing different about
this rerun of Experiment 1. They are not pay-
ing attention to their outputs, except when
actions become extreme because of a peak
in the disturbance.

A more extreme version of the experiment
involves choosing A and B to give the cubic
form a reversal of slope near the center of
the screen (see Figure 7). Most subjects do
notice something different now: A few have
complained that the handle is broken or that
the computer is malfunctioning, although
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HANDLED

DISTURBANCES

Figure 8. Analytical model for Experiment 5. (The
subject sees four independently disturbed cursors
[Cl through C4] on the cathode-ray tube. The
handle affects all four cursors by an equal amount
but in opposite directions for odd and even cursors.
The subject can use the handle to control any one
of [at least] 16 different aspects of the display.)

when they stop complaining they perform just
as well as anyone else.

The reversal of slope converts the nomi-
nally Type N relationship to Type P near
the center of the screen. Subjects simply skip
across the Type P region as quickly as they
can to the next stable point, where the feed-
back is once again negative. Over the rest of
the range, the behavior is precisely what is
predicted from the inverse of the g function.

A computer simulation using the successive-
state method and a value of K chosen 'for
stability behaves in just the same way, whether
the behaving system is assumed linear or non-
linear. In fact, a three-level model I tried pro-
duced results indistinguishable from those for
a real subject except for the very first move.
The model had about 2% random noise in it.

The point of both versions of Experiment 4
is to show that the apparent form of the "be-
havioral law" connecting the distal distur-
bance to the behavior is determined strictly
and quantitatively by the inverse of the feed-
back function and is, therefore, a property
of the environment and not of the subject.

When 'these nonlinear feedback functions
are used in Experiment 3, the subject still
succeeds, although not as well, at maintaining
a regular input pattern. A bystander entering
at that point would have difficulty believing
that the motions of the control handle had
anything to do with the patterns on the
screen. Yet the N-system equations sort out
all effects neatly and quantitatively, with little

random variation left over. It is all a matter
of wearing the right pair of glasses.

Experiment 5: Multiple Choice

Now the display shows four side-by-side
cursors instead of one, each moving up and
down in its own band under the influence of
its own independent random disturbance. The
handle position contributes equally to the
positions of all four cursors but affects Cur-
sors 1 and 3 (Cl and C3) in the opposite
direction to the effects on C2 and C4 (see
Figure 8).

The subject is asked to pick any one cur-
sor and hold it as steady as possible some-
where within its range of up-down travel. The
subject does so, with results indistinguishable
from those of Experiment 2. One of the four
cursors remains at the position qf determined
with all disturbances set to zero, while the
other three cursors wander unsystematically
up and down.

All cursors are input quantities; all are
imaged on the subject's retinas. Only one,
however, is a controlled input quantity. We
can now distinguish controlled from uncon-
trolled input quantities and illustrate the
test for the controlled quantity, which is a
tool for investigating N systems of all kinds.

There are many possible variations of the
test. One that works well for these experiments
involves treating both handle movements and
disturbances as random variables and compar-
ing the expected variance, Fexp, of each con-
trolled quantity with the observed variance,
Fobs- Of course these variances must be cal-
culated taking into account the hypothesized
nature of the input quantity to be tested. The
expected variance is computed by adding in
quadrature the contributions from observed
handle position and observed disturbances, ap-
propriately computed on the basis of ana-
lyzing the physical situation. Then, a stability
factor 5 is calculated:

If S = 0, the input quantity is not con-
trolled. If S is positive, behavior destabilizes
the input quantity, and positive feedback
exists. If S is negative, behavior stabilizes the
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input quantity, and negative feedback exists.
For 5 several standard deviations more nega-
tive than —1, the behaving system can be
called an ideal control system. For experi-
ments like the first three, S is typically —4
to —9 for the controlled cursor, implying that
the chances against an N system existing
range from one in thousands to one in billions.
For uncontrolled cursors, S ranges from +1
to —1 on short runs and comes close to 0 on
long (10-minute) runs.

This statistical version of the test should
be useful in cases where behavior takes place
in a natural environment, where there are
many possible effects of behavior, many
sources of disturbance, and many potentially
controlled quantities affected both by behav-
ior and by disturbances. Once a controlled
quantity has been found by this statistical
approach, use can be made of the more quan-
titative methods of analysis previously dis-
cussed.

Any version of the test for the controlled
quantity must be followed by verifying that
an apparent controlled quantity must be
sensed by the behaving system in order to be
controlled. In the present experiments, cover-
ing up the appropriate cursor with a card-
board strip should, and does, cause the con-
trolled quantity to become an uncontrolled
one. Covering any or all of the other cursors
has no effect at all.

Experiment 6: More-Abstract
Controlled Quantities

Under the same conditions as Experiment
5, the subject is asked to hold constant some
other aspect of the display (not specified by
the experimenter) rather than the position of
one of the cursors. Most subjects are initially
baffled by this request, some permanently un-
til given broad hints. Eventually, most see the
possibilities o'f the fact that the handle af-
fects odd and even cursors oppositely. One
aspect is the difference in position between an
odd and an even cursor. A subject can easily
keep, say, Cl and C4 level with each other
or Cl a fixed distance above or below C4.
Both cursors wander up and down but always
together. With suitable definitions, a con-
trolled quantity can be found that unequivo-

cally passes the test for the controlled quan-
tity (four possibilities of this type exist).

Another type of controlled quantity is the
configuration with three cursors lying along a
straight line. Four possible controlled quan-
tities of this type exist. Still another involves
creating a fixed angle with one cursor centered
at the vertex and the other two lying in the
sides of the angle. All these are relatively easy
to control once the subject has realized that
they can be seen in the display. Only 1 of
these 16 possible static controlled quantities
can be controlled at a time 'because the con-
trol handle has only one degree of freedom.

What determines which controlled quantity
will be controlled? The apparatus obviously
does not, for it determines only the possibil-
ities; not the behavior either—the output,
with its single degree of 'freedom, affects all
possible controlled quantities all of the time.
The behaving system itself must be the deter-
mining factor. What the person attends to
becomes the controlled aspect of the display.
The person also determines the particular
state of the selected aspect that is to serve
as (ft*. My efforts to make models of human
organization have been aimed at explaining
this type of phenomenon. It has been diffi-
cult at times to explain why such models are
required when the listener is unaware that
such phenomena exist.

In all these experiments, a typical correla-
tion coefficient relating handle position to a
noncontrolled quantity or its associated dis-
turbance is in the range from 0 to .8. Statis-
tics are poor in these short runs, but some
correlations do occur even in long runs. The
handle and the disturbances do affect the
various cursors; correlations are to be ex-
pected there.

The correlation between a controlled quan-
tity and either its associated disturbance or
the handle position is normally lower than .1;
a well-practiced subject will frequently pro-
duce a correlation of zero to two significant
figures. At the same time, the correlation be-
tween magnitude of disturbance and handle
position is normally higher than .99 (I can
often reach .998 in the simpler experiments).
To appreciate the meaning of these figures,
one has to remember that the subject cannot
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sense any of the disturbances except through
their effects on the input quantities, the cur-
sor positions.

If the controlled input quantity shows a
correlation of essentially zero with the be-
havior, any standard experimental design
would reject it as contributing nothing to the
variance of behavior. But the disturbance that
contributes essentially 100% of the variance
of the behavior can act on the organism only
via the variable that shows no significant cor-
relation with behavior. Not only the old
cause-effect model breaks down when one is
dealing with an N system, the very basis of
experimental psychology breaks down also.

Summary and Conclusions

I have examined in this article four mis-
takes that threw cybernetics off the track as
far as psychology is concerned: (a) thinking
of control theory as a machine analogy, (b)
focusing on objective consequences of behav-
ior of no importance to the behaving system
itself, (c) misidentifying reference signals as
sensory inputs, and (d) overlooking purpo-
sive properties of human behavior in man-
machine experiments. Considering behavior,
without going through any technological anal-
ogy, I have developed two mathematical tools
for analyzing and classifying behaving orga-
nisms. The classical cause-effect model is
included as a special case. Finally, I have
introduced six experiments that illustrate
classes of phenomena peculiar to control be-
havior and that cannot be explained under
any paradigm but the control system model.
(The last statement can be taken as a friendly
challenge.)

I believe that the concepts and methods ex-
plored here are the basis for a scientific revo-
lution in psychology and biology, the revolu-
tion promised by cybernetics 30 years ago
but delayed by difficulties in breaking free of
older points of view. Kuhn (1970) uses the
term paradigm in the sense I mean when I
say that control theory is a new paradigm
for understanding life processes—not only in-
dividual behavior but the behavior of bio-
chemical and social systems. Chapter X in
Kuhn's book discusses "Revolutions as

Changes in World View." The experiments
we have seen here, while not of great im-
portance in themselves, represent my attempt
to show how control theory allows us to see
the same facts of behavior that have always
been seen but through new eyes, new organiz-
ing principles, and new views of the world of
behavior.

The natural tendency of any human being
is to deal with the unfamiliar by first trying
to see it as the nearest familiar thing. That is
what happened to the basic concepts of cy-
bernetics. It will happen even more pro-
nouncedly in response to the ideas we have
looked at here. The difficulties faced by a
new paradigm, as Kuhn explained so clearly,
result not from battles over how to explain
particular conceptual puzzles, but from by-
passing altogether old puzzles that some peo-
ple insist for a long time still need solving.
There are still many fruitful areas of research
and many unsolved problems concerning the
properties of phlogiston. Modern observational
and data-processing techniques in astronomy
could lead to great (but unwanted) improve-
ments in the predictive accuracy of the epi-
cycle model of planetary motions (I knew a
graduate student in astronomy who showed
how well epicycles could work with the aid
of a large computer).

Control theory bypasses the entire set of
empirical problems in psychology concerning
how people tend to behave under various ex-
ternal circumstances. One kind of behavior
can appear under many different circum-
stances; instead of comparing all the various
kinds of causes with each other while looking
for objective similarities to explain the com-
mon effects, we are led by control theory to
look for the inputs that are disturbed not only
by the discovered causes but by all possible
causes. For a thousand unconnected empirical
generalizations based on superficial similar-
ities among stimuli, I here substitute one gen-
eral underlying principle: control of input.
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