
Towards a control model of object recognitionR.Young and J. IllingworthCentre for Vision, Speech and Signal Processing,School of Electronic Engineering,Information Technology and Mathematics,University of Surrey, Guildford GU2 5XH, United Kingdom.e-mail: R.Young@surrey.ac.ukAbstractIn this paper we present some preliminary investigations into the devel-opment of an active vision system with the aim of developing a real-worldmodel of simple visual behaviour, based upon a control theory [4] view ofpurposive behaviour. The goal of the system is to control its �xation withrespect to objects of a relatively complex nature.Keywords: Fovea, PCT, �xation, segmentation, clustering1 IntroductionPrevious work in the area of object recognition has concentrated mainly onmatching geometric models with information derived from single, mainly, im-ages. Research that has involved multiple images, whether from stereo or fromsequences obtained from mobile sensors follows a similar rationale with addi-tional information from the extra images enhancing the construction of theobserved model. The main inuence on such computer vision research has beenDavid Marr [2] who proposed a computational, reconstructive approach to vi-sual processing that has little to do with the vision of natural living systems.The success of other object recognition research in dynamic scenes has beenlimited to the tracking of simple outlines, motion and objects of a single colour[3, 1, 6].The work presented in this paper represents a shift away from traditionalapproaches of computer vision towards a more natural control model based ona hierarchy of signals exempli�ed by Powers' Perceptual Control Theory (PCT)[4]. The methods employed in this system follow the standard design of PCTcontrollers along with conventional computer vision techniques of segmentation.
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2 Scene representationFor the purposes of biological plausibility and computational (e�cacy) the sceneas viewed by the tracking system is represented by a distribution of visualelements similar to that of the human retina. The centre of the �eld of view issampled at a high resolution decreasing logarithmically to to the periphery.The top half of �gure 1 shows what

Figure 1: The foveal representation ofa well-known cartoon character

such a view would look like. Eachsquare area represents one colour in-put signal and is taken as the mostprominent colour which falls on thatarea. There are 32 rings of square re-gions each with 64 elementrs. Thesecan easily be mapped into a rectangu-lar array which is more suited to pro-cessing within a computer program.The array of the same scene is shownin the bottom half of �gure 1, whereeach row represents one ring. The ringsfrom the fovea to the periphery mapto the top to bottomn rows, respec-tively. This foveal representation of2,000 pixels signi�es a substantial re-duction in the amount of the informa-tion that needs to be processed, com-pared with the standard uniform im-age of 60,000 pixels covering the same�eld of view.3 Fixation input signalIn succeding sections we describe how particular regions of interest in a sceneare segmented from the background. Since each row and column of the pixels,in the foveal distribution, that make up the region of interest represent thedirection and magnitude from the centre of the �eld of view we are able toderive a �xation signal which can be used as the input to a standard PCTcontrol system. Sparks [5] reports that animal visual �xation works in a similarmanner. Populations of cells in a neural map in the superior colliculus de�nethe direction and magnitude of eye movements.The �xation signal is derived by simply taking the mean of all the positionvectors within the region of interest. Figure 2c shows the foveal representationof �gure 2a where the small white blob corresponds to the white circle in 2a.The dark line in 2a from the central cross hair is a visual representation of the�xation input signal derived from the mean of the position vectors of the blob.Figure 2b shows the end result of control of the �xation signal. The cross hair2



tracker is now centred on the target circle. Notice in 2d that the circle nowcorresponds to a white band in the foveal view. What has happened is that thetracker has moved until all the position vectors are in equilibrium (their averageis zero) resulting in the �xation on the centroid of the region.Fixation on the centroid occurs not only regular geometric �gures but also forirregular shapes as shown in �gure 3. The image in �gure 2a contains a numberof irregular coloured shapes. The foveal view when �xated on the centroid ofeach object is shown in �gure 3b.

(a) (b)
(c) (d)Figure 2: A simple, single-level �xation control simulation. Images (c) and (d)are the foveal representations of the initial (a) and �nal (b) uniform scenes,respectively.

4 Image and Robot outputOur experiments are performed within static images, o�ine, and in real-timewith live static images as well as with a PUMA700 robot arm and camerasystem. In the static experiments the movement of the robot is represented by3



(a) (b)Figure 3: Simple colour �xation. a) The image of simple coloured �gures, b)The foveal view when �xated on the �gures, clockwise from top left.a moving cross-hair. The input which is controlled is the size of the o�set fromthe centre view to the target, with the reference signal being zero. The errorsignal, therefore, is the same as the input signal.The output signal is the direction and velocity of the movement towardsthe target and the velocity is a linear function of the error signal. So, as thesensor centre gets closer to the target the velocity decreases until �xation, whenthe error will be zero and, therefore, the velocity. Relating the error signal tothe velocity, in this way, avoids oscillations and jerky movements as �xation isreached.With the real-time controller it is possible to execute commands de�ning thedirection and velocity of movement required. The image processing is performedin parallel with the robot movements and so it is not necessary to wait for amovement to cease before updating the error signal. Also commands can besent to the controller while the robot is in motion which override all previouscommands. In this way we are able to continually monitor and control the�xation signal.Control within static views is handled in the same way with the exceptionthat the movement in each iteration is computed discretely from the current4
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Figure 4: On the left is the input function for the lowest level, the RGB image.On the right the higher levels derived from a 3x3 pixel region of its precedinglevel.desired velocity and the length of time of each iteration.5 Single-level ControlSingle-level control is su�ceint for tracking simple lights or areas in grey-levelor colour scenes. Areas within an image of a particular grey-level range (such asthe brightest) can easily be segmented, from which the �xation signal of a blobcan be derived. Similarly for colour regions, by de�ning the upper and lowerthresholds for the red, green and blue values. Figures 2 and 3 show examples oftracking to simple regions in simulated images. Tracking experiments to simplelights and single-coloured objects have been performed successfully in real-timewith the robot.
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Figure 5: The two level colour processing control system used in our experi-ments. The outputs from these levels, of the magnitude and direction to thetarget, de�ne the input to the highest level (�xation) control system.6



6 Object model representation and acquisitionA couple of problems arise when extending tracking control to multi-colouredobjects,� determining the RGB values of the di�erent colours which belong to atarget object� distinguishing between areas of the same colour which belong to di�erentobjects (or the background)The �rst problem is partly addressed by the method of model acquisitionemployed. The target object is isolated from its surroundings and the RGBvectors at each pixel are recorded and clustered (for the purposes computationale�ciency) into a small (10-20) number of ideal vectors which are said to representthe input vector weights for the object when it is assumed to be under perfectcontrol. This enables single-level, multi-feature control.Input vectors at higher, additional levels are derived by examing a 3x3 areaof the preceding level. Within this area the feature types are counted giving aninput vector which is the length of the number of possible features (see �gure4). Adding these higher levels partly solves the second problem as the inputvectors will be more speci�c to the target object than to others.7 Multi-level ControlFigure 5 shows a block diagram of a multi-level control system. Level 0 processesthe basic RGB vectors and higher-levels (only one is shown) the vectors fromthe 3x3 pixel area. The input which is controlled at the highest level is the theperception of the direction and magnitude of movement to the target.Some preliminary results of the multi-level control system are shown in �gure6. Each row of images show the results of �xation for each of the halloween masktargets, clockwise from top left. The columns, from left to right, show the resultswith levels 0, 1 and 2. In each case the starting position is the centre of theimage and the cross-hair indicates the end (which should be the nose of eachface) position with the dark line showing the course of �xation.From the left column it can be seen that control, solely with level 0, ispoor. Although �xation is made towards the correct targets interference frombackground and extraneous signals adversely a�ects the �xation signal. Con-trol which includes level 1 (centre column) is greatly improved, with �xation(ending), correctly, at the centre of the target face each time. Including anotherlevel (level 2, right column) does not seem to improve control further and infact seems slightly worse. However, this is probably more to do with the factthat much of the signal is lost at this level than with higher levels not being ofbene�t. Given the instability of the input signal at higher levels we limit thehierarchy to the lower two feature processing levels.7



Figure 6: Multi-level control8



8 ConclusionsThe �xation system presented in this paper performs well in real-time on simplelights and single coloured �gures in synthetic and real scenes. Results have alsobeen presented of some preliminary work concerning �xation to more complex,multi-coloured objects. Control improves with added levels in a hierarchy. Eachlevel embodies signals which are more speci�c to the target object enabling thetarget to be more easily distinguished from its surroundings. The main problemis deriving the input functions and their weights. In the present scheme thesignals at the higher levels are rather improverished with much of the lowerlevel inputs being lost resulting sometimes erratic control. Future work wouldbene�t from further investigation into the reorganisation and development ofthe input functions.We have presented some preliminary results in o�ine images which show thatreasonable �xation control, to complex objects, can be achieved with signalsbased only upon colour. Control may be improved further by including featuredimensions such as edges and motion to add even greater discrimination.References[1] Paul Hoad and John Illingworth. Automatic control of camera pan, zoomand focus for improving object recognitiony a moving observer. In Appen-dices to PPR-3 of VAP II, chapter D-2. Esprit Basic research Project 7108,1995.[2] David Marr. Vision: A Computational Investigation into Human Repre-sentation and Processing of Visual Information. Freeman, San Francisco,1982.[3] Peter Nordlund and Tomas Uhlin. Closing the loop: Detection and pursuitof a moving object by a moving observer. In Appendices to PPR-3 of VAPII, chapter B-4. Esprit Basic research Project 7108, 1995.[4] WilliamT. Powers. Behavior: The Control of Perception. Aldine DeGruyter,Hawthorne, NY, 1973.[5] David L. Sparks. Translation of sensory signals into commands for control ofsaccadic eye movements: Role of primate superior colliculus. PhysiologicalReviews, 66(1):118{171, January 1986.[6] M Spratling and R Cipolla. Uncalibrated visual servoing. In BMVC, pages545{554, 1996.
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